I want compute K(k) as a Taylor Series; k∈R and |k|<1. Can someone help me? K(k):=∫π20dt√1−k2sin2t Results so far: K(k):=∫π20dt√1−k2sin2t=∫π20(1−k2sin2t)−12dt With using binomial Series we get ∫π20∞∑Φ=0(−12Φ)(−k2Φ)sin2Φt dt=∞∑Φ=0(−12Φ)(−k2Φ)∫π20sin2Φt dt For Φ even: ∫π20sin2Φt dt=π2123456...n−1n=S thus we get: 1.∞∑Φ=0(−12Φ)(−k2Φ)⋅S now i need some help to compute 1. as taylor series, can someone help?
Thanks! Landau.
Answer
The generating function for central binomial coefficient is given by mathworld site.
∫π201√1−4(k24sin2(t))dt=∫π20∞∑n=0(2nn)(k24sin2(t))ndt=∞∑n=0(2nn)k2n4n⋅12⋅β(n+1/2,1/2)=∞∑n=0(2n)!(n!)222n⋅12(Γ(n+1/2)Γ(1/2)Γ(n+1))k2n=∞∑n=0(2n)!(n!)222n⋅12((2n)!√π√π(n!)2)k2n=π2∞∑n=1((2n)!(n!)222n)2k2n=π2∞∑n=0P2n(0)k2n
Where Pn(0) is Legendre polynomial. Seems that wolf gives the sum of the right side as EllipticK[k^2]
. Also it is given here on wiki.
No comments:
Post a Comment