I've been trying to solve this question for hours. It asks to find the limit without L'Hôpital's rule. lim Any tips or help would be much appreciated.
Answer
If you are given that \lim_{x \to 0}{\sin x \over x } = 1, then since 1-\cos (3x) = 2 \sin^2 ({3 \over 2} x) (half angle formula), we have
\begin{eqnarray} {1 -\cos (3x) +\sin (3x) \over x } &=& {2 \sin^2 ({3 \over 2} x) \over x} +{\sin (3x) \over 3x} {3x \over x} \\ &=& 2 ({\sin ({3 \over 2} x) \over {3 \over 2} x})^2 { ({3 \over 2} x)^2 \over x} + 3 {\sin (3x) \over 3x} \\ &=& {9 \over 2} x ({\sin ({3 \over 2} x) \over {3 \over 2} x})^2 + 3 {\sin (3x) \over 3x} \end{eqnarray} Taking limits gives 3.
No comments:
Post a Comment