I want to ask a question about modular arithmetic. I know, that modular multiplicative inverse exists only if modulo and integer are relatively prime. I want to know, are there any ways of division in modular arithmetic, if modulo and integer aren't relatively prime? I tried to find info about that, but failed.
Answer
Below I explain how to view modular division via (possibly multiple-valued) modular fractions.
Consider x≡A/B(modM), i.e. the solutions of Bx≡A(modM). Let d=gcd Then \, d\mid B,\,\ d\mid M\mid B\,x\!-\!A\,\Rightarrow\, d\mid A\ is a neccessary condition for existence of solutions.
If so, let \ m, a, b \, =\, M/d,\, A/d,\, B/d.\ Then cancelling \,d\, throughout yields
x\equiv \dfrac{A}B\!\!\!\pmod{\!M}\iff M\mid B\,x\!-\!A\!\! \overset{\large {\ \ \color{#c00}{{\rm cancel}\ d}}}\iff m\mid b\,x\! -\! a \iff x\equiv \dfrac{a}b\!\!\!\pmod{\!m}
where the fraction \ x\equiv a/b\pmod{\! m}\, denotes all solutions of \,ax\equiv b\pmod{\! m},\, and similarly for \, the \, fraction \ x\equiv A/B\pmod{\!M}.\
The above argument implies that if solutions exist then we can compute the complete solution set by \color{#c00}{{\rm cancelling}\ d} = (B,M)\, from the numerator \,A,\, the denominator \,B\, \rm\color{#c00}{and} the modulus \,M,\, i.e.
\bbox[8px,border:1px solid #c00]{x\equiv \dfrac{a\color{#c00}d}{b\color{#c00}d}\!\!\!\pmod{\!m\color{#c00}d}\iff x\equiv \dfrac{a}b\!\!\!\pmod{\! m}}\qquad
If \, d>1\, then \, x\equiv A/B\pmod{\!M}\, is multiple-valued, having \,d\, solutions in AP, namely
$$\quad\ \begin{align} x \equiv a/b\!\!\pmod{\! m}\, &\equiv\, \{\, a/b + k\,m\}_{\,\large 0\le k
\end{align}$$
{\rm e.g.} \overbrace{\dfrac{6}3\pmod{\!12}}^{{\rm\large cancel}\ \ \Large (3,12)\,=\,\color{#c00}3}\!\!\!\!\equiv \dfrac{2}{1}\!\pmod{\!4}\equiv \!\!\!\!\!\!\!\!\!\!\!\!\!\!\overbrace{\{2,6,10\}}^{\qquad\ \ \,\Large\{ 2\ +\ 4k\}_{\ \Large 0\le k< 3}}\!\!\!\!\!\!\!\!\!\!\!\!\!\pmod{\!12},\ indeed \ 3\{2,6,10\}\equiv \{6\}
Note in particular that a modular "fraction" may denote zero, one, or multiple solutions.
Remark A nice application of modular fractions is the fractional extended Euclidean algorithm described in the Remark here. There you'll find explicit examples of the intersection of solution sets of multiple-valued modular fractions.
No comments:
Post a Comment