Find the sum of the series
$$\sum^{\infty}_{n=1} \frac{1}{(n+1)(n+2)(n+3) \cdots (n+k)}$$
Given series
$$\sum^{\infty}_{n=1} \frac{1}{(n+1)(n+2)(n+3) \cdots (n+k)}$$
$$ = \frac{1}{2\cdot3\cdot4 \cdots (k+1)}+\frac{1}{3\cdot4\cdot5 \cdots (k+2)}+\frac{1}{4\cdot5\cdot6\cdots (k+3)} +\cdots$$
now how to proceed further in this pleas suggest thanks ....
No comments:
Post a Comment