Finding value of ∞∑k=0(−1)k(1⋅3⋅5⋯⋯(2k+1))⋅2k
Try: We can write it as ∞∑k=0(−1)k⋅(2⋅4⋅6⋯(2k))(1⋅2⋅3⋯(2k+1))⋅2k=∞∑k=0(−1)k⋅2k⋅k!(2k+1)!⋅2k
So we have \sum^{\infty}_{k=0}\frac{(-1)^k\cdot k!\cdot (k+1)!}{(2k+1)!\times (k+1)!}=\sum^{\infty}_{k=0}\frac{(-1)^k}{\binom{2k+1}{k}\cdot (k+1)!}
Now i did not understand how to solve further
Could some help me , Thanks
Answer
Rewriting the sum as
2\sum_{k=0}^\infty\frac{(-1)^k2^k}{(2k+1)!!}\left(\frac12\right)^{2k+1}
we see the Maclaurin series of the Dawson integral, with argument \frac12:
=2F\left(\frac12\right)=\sqrt\pi e^{-\frac14}\operatorname{erfi}\left(\frac12\right)
No comments:
Post a Comment