Any hints that can take me from here or am I completely lost.
$\sum_{k=1}^{n}{k^p}=\sum_{a=1}^{p}(-1)^{p-a}(\sum_{b=0}^{a-1}\binom{a}{b}(a-b)^n(-1)^b)(\sum_{a1
∑nk=1kp=∑pa=1(−1)p−a(∑a−1b=0(ab)(a−b)n(−1)b)(∑ni=1(n+1−i)a−1(i)))
∑nk=1kp=∑pa=1(−1)p−a(∑ab=0(ab)(a−b)n(−1)b)(∑ni=1(n+1−i)a−1(i)))
∑nk=1kp=∑pa=1(−1)p−a(a!S(n,a))(∑ni=1(i)a−1(n+1−i)))
Where S(n,a) is a stirling number of second kind.
No comments:
Post a Comment