I have this basic problem:
In a farm, $X$ animals are added to the farm. These animals gain weight according to the equation: $500 - 2X$ gr. Which interval of animals can the farm take, if the total weight gain is greater than $30,600$ Kg?
Original (Spanish - Español):
En un criadero de cuyes se integran $x$ cuyes, si se tiene presente que los cuyes ganan peso en promedio de $(500 - 2x)$ gramos. ¿Qué intervalo de cuyes puede aceptar esta granja si la ganancia total de peso de los cuyes es mayor a $30 600$ Kg?
Step 1:
Total animals: $x$.
Weigthgain = $(500 - 2x)$ gr.
TotalWeightgain > $30 600(1000)$ converting kg to gr.
Step 2:
$$x(500 - 2x) > 30600000$$
Step 3:
$$0 > 2x^2 - 500x + 30 600 000$$
Step 4:
$$ x = \frac{-(-500) +- \sqrt[2]{(-500)^2 - 4(2)(30 600 000)}}{2(2)}$$
But as you can see, the sqrt is negative. So It does not exist.
What should be the next step?
No comments:
Post a Comment