Sunday, May 8, 2016

integration - Any simple way for proving intinfty0mathrmerf(x)erfc(x),dx=fracsqrt21sqrtpi?


How to prove 0erf(x)erfc(x)dx=21π with erfc(x) is the complementary error function, I have used integration by part but i don't succed


Answer



The given integral equals


4π+0x0ea2da+xeb2dbdx=4π


or


\frac{4}{\pi}\iint_{0\leq a\leq b}(b-a)e^{-(a^2+b^2)}\,da\,db = \frac{4}{\pi}\int_{0}^{+\infty}\int_{0}^{\pi/4}(\cos\theta-\sin\theta)\rho^2 e^{-\rho^2}\,d\theta \,d\rho or \frac{4}{\pi}(\sqrt{2}-1)\int_{0}^{+\infty}\rho^2 e^{-\rho^2}\,d\rho = \frac{4}{\pi}(\sqrt{2}-1)\frac{\sqrt{\pi}}{4}=\color{red}{\frac{\sqrt{2}-1}{\sqrt{\pi}}}.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...