Is it always possible to find the limit of a function without using L'Hôpital Rule or Series Expansion?
For example,
$$\lim_{x\to0}\frac{\tan x-x}{x^3}$$
$$\lim_{x\to0}\frac{\sin x-x}{x^3}$$
$$\lim_{x\to0}\frac{\ln(1+x)-x}{x^2}$$
$$\lim_{x\to0}\frac{e^x-x-1}{x^2}$$
$$\lim_{x\to0}\frac{\sin^{-1}x-x}{x^3}$$
$$\lim_{x\to0}\frac{\tan^{-1}x-x}{x^3}$$
No comments:
Post a Comment