Monday, May 16, 2016

complex analysis - Evaluate P.V.intinfty0fracxalphax(x+1)dx where $0 < alpha


Evaluate
P.V.0xαx(x+1)dx where 0<α<1



Thm Let P and Q be polynomials of degree m and n,respectively, where nm+2. If Q(x)0. for Q has a zero of order at most 1 at the origin and f(z)=zαP(z)Q(z), where 0<α<1 then P.V,0xαP(x)Q(x)dx=2πi1eiα2πkj=1Res[f,zj] where z1,z2,,zk are the nonzero poles of PQ



Attempt


Got that P(x)=1 where its degree m=1 and q(x)=x(x+1) its degree is n=1 so it is not the case that nm+2 because 21+2


Answer



We assume 0<α<1. We have



P.V.0xαx(x+1)dx=πsin(απ).



Hint. One may prove that 0xαx(x+1)dx=10xαx(x+1)dx+1xαx(x+1)dx=10xα1x+1dx+01xα11+1x(dxx2)=10xα11+xdx+10xα1+xdx=10xα1(1x)1x2dx+10xα(1x)1x2dx=10xα1(1x)1x2dx+10xα(1x)1x2dx=12ψ(α+12)12ψ(α2)+12ψ(1α2)12ψ(1α2)=πsin(απ) where we have used the classic integral representation of the digamma function 101ta11tdt=ψ(a)+γ,a>1, and the properties ψ(a+1)ψ(a)=1a,ψ(a)ψ(1a)=πcot(aπ).



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f:AB and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...