Find remainder when 777777 is divided by 16.
777=48×16+9. Then 777≡9(mod16).
Also by Fermat's theorem, 77716−1≡1(mod16) i.e 77715≡1(mod16).
Also 777=51×15+4. Therefore,
777777=77751×15+4=(77715)51⋅7774≡115⋅94(mod16) leading to 81⋅81(mod16)≡1(mod16).
But answer given for this question is 9. Please suggest.
No comments:
Post a Comment