$$\sum\limits_{n=0}^{\infty} \frac{x^{3n}}{(3n)!}$$ should be calculated using complex numbers I think, the Wolfram answer is :
$ \frac{1}{3} (e^x + 2 e^{-x/2} \cos(\frac{\sqrt{3}x}{2})) $
How to approach this problem?
Answer
We have that by $f(x)=\sum\limits_{n=0}^{\infty} \frac{x^{3n}}{(3n)!}$
$$f'(x)=\frac{d}{dx}\sum\limits_{n=0}^{\infty} \frac{x^{3n}}{(3n)!}=\sum\limits_{n=1}^{\infty} \frac{x^{3n-1}}{(3n-1)!}$$
$$f''(x)=\frac{d}{dx}\sum\limits_{n=1}^{\infty} \frac{x^{3n-1}}{(3n-1)!}=\sum\limits_{n=1}^{\infty} \frac{x^{3n-2}}{(3n-2)!}$$
$$f'''(x)=\frac{d}{dx}\sum\limits_{n=1}^{\infty} \frac{x^{3n-2}}{(3n-2)!}=\sum\limits_{n=1}^{\infty} \frac{x^{3n-3}}{(3n-3)!}=f(x)$$
and $f'''(x)=f(x)$ has solution
$$f(x)=c_1e^x+c_2e^{-x/2}\cos\left(\frac{\sqrt 3 x}{2}\right)+c_3e^{-x/2}\sin\left(\frac{\sqrt 3 x}{2}\right)$$
with the initial conditions $f(0)=1$, $f'(0)=0$, $f''(0)=0$.
No comments:
Post a Comment