Let $A=[a_{ij}]\in Mat_n(\mathbb{R})$ the matrix defined by:
$$a_{ij}=\begin{eqnarray}n+1 &&&&&&&&\text{if $i=j$}\\
1 &&&&&&&&\text{if $i\not=j$}
\end{eqnarray}$$
Calulate $\det(A)$
My work:
By definition $$A=\begin{pmatrix}
n+1&&1&&1&&1&&...&&1\\
1&&n+1&&1&&1&&...&&1\\
1&&1&&n+1&&1&&...&&1\\
.\\
.\\
.\\
1&&1&&1&&1&&...&&n+1
\end{pmatrix}$$
Apply elemental operation by rows, we have:
$$\begin{pmatrix}
n+1&&1&&1&&1&&...&&1\\
1&&n+1&&1&&1&&...&&1\\
1&&1&&n+1&&1&&...&&1\\
.\\
.\\
.\\
1&&1&&1&&1&&...&&n+1
\end{pmatrix}\equiv
\begin{pmatrix}
1&&1&&1&&1&&...&&n+1\\
1&&n+1&&1&&1&&...&&1\\
1&&1&&n+1&&1&&...&&1\\
.\\
.\\
.\\
n+1&&1&&1&&1&&...&&1
\end{pmatrix}\\\\
\equiv
\begin{pmatrix}
1&&1&&1&&1&&...&&n+1\\
0&&n&&0&&0&&...&&-n\\
0&&0&&n&&0&&...&&-n\\
.\\
.\\
.\\
n&&0&&0&&0&&...&&-n
\end{pmatrix}
$$
$$
\equiv
\begin{pmatrix}
1&&1&&1&&1&&...&&n+1\\
0&&n&&0&&0&&...&&-n\\
0&&0&&n&&0&&...&&-n\\
.\\
.\\
.\\
0&&-n&&-n&&-n&&...&&-n^2-2n
\end{pmatrix}
\equiv
\begin{pmatrix}
1&&1&&1&&1&&...&&n+1\\
0&&n&&0&&0&&...&&-n\\
0&&0&&n&&0&&...&&-n\\
.\\
.\\
.\\
0&&0&&-n&&-n&&...&&-n^2-3n
\end{pmatrix}
\equiv
\begin{pmatrix}
1&&1&&1&&1&&...&&n+1\\
0&&n&&0&&0&&...&&-n\\
0&&0&&n&&0&&...&&-n\\
.\\
.\\
.\\
0&&0&&0&&-n&&...&&-n^2-4n
\end{pmatrix}
\equiv
\begin{pmatrix}
1&&1&&1&&1&&...&&n+1\\
0&&n&&0&&0&&...&&-n\\
0&&0&&n&&0&&...&&-n\\
.\\
.\\
.\\
0&&0&&0&&0&&...&&n^2-n^n
\end{pmatrix}=B
$$
Then,
$\det(A)=-\det(B)=-\det\begin{pmatrix}
1&&1&&1&&1&&...&&n+1\\
0&&n&&0&&0&&...&&-n\\
0&&0&&n&&0&&...&&-n\\
.\\
.\\
.\\
0&&0&&0&&0&&...&&n^2-n^n
\end{pmatrix}=-n^{n-1}+n^n$
I have a little doubt in the $n\times n$ element, I think is a little different. Can someone help me?
No comments:
Post a Comment