Friday, January 8, 2016

sequences and series - Limits Problem : limntoinfty[(1+frac1n)(1+frac2n)cdots(1+fracnn)]frac1n is equal to..



Problem:



How to find the following limit :


lim is equal to


(a) \frac{4}{e}


(b) \frac{3}{e}


(c) \frac{1}{e}


(d) e


Please suggest how to proceed in this problem thanks...


Answer



\log\left(\lim_{n \to \infty}[(1+\frac{1}{n})(1+\frac{2}{n})\cdots(1+\frac{n}{n})]^{\frac{1}{n}}\right) =\lim_{n \to \infty}\frac{\log(1+\frac{1}{n})+\log(1+\frac{2}{n})+\cdots+\log(1+\frac{n}{n})}{n} =\int_{1}^2 \log(1+x)dx= [x\log(x)-x]_{x=1}^{x=2}=2\log(2)-1


This yields the solution e^{2\log(2)-1}=4/e.



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...