Let $f : \mathbb R \to \mathbb R$ be a solution of the additive Cauchy functional equation satisfying the condition
$$f(x) = x^2 f(1/x)\quad \forall x \in \mathbb R\setminus \{0\}.$$
Then show that $f(x) = cx,$ where $c$ is an arbitrary constant.
Answer
Let $F(x)=f(x)-xf(1)$
For some $x\neq 0$, $F(\frac{1}{x})=f(\frac{1}{x})-\frac{1}{x}f(1)$.
Hence for $x\neq 0$ $$\begin{align}
x^2F(\frac{1}{x})&=x^2f(\frac{1}{x})-xf(1)\\&=f(x)-xf(1)\\&=F(x)\end{align}$$ and of course $F(1)=0$ and $F$ is additive.
Let us prove that $\forall x\in \mathbb R, F(x)=-F(-x)$
Indeed, $0=F(1)=F(x+1-x)=F(x)+F(1)+F(-x)=F(x)+F(-x)$
Also, for some $x\neq -1$,
$$\begin{align}
F(x)=F(x+1)
&=(x+1)^2F\left(\frac{1}{x+1}\right)\\
&=(x+1)^2F\left(1-\frac{x}{x+1}\right)\\
&=-(x+1)^2F\left(\frac{x}{x+1}\right)\\
&=-(x+1)^2\left(\frac{x}{x+1}\right)^2F\left(\frac{x+1}{x}\right)\\
&=-x^2F\left(1+\frac{1}{x}\right)\\
&=-x^2F\left(\frac{1}{x}\right)\\
&=-F(x)\\\end{align}$$
This also holds for $x=-1$ since $F(-1)=-F(1)$.
Hence $2F=0$.
Hence $F=0$ and we're done.
No comments:
Post a Comment