Do there exist functions $f : \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x+y)=f(x)+f(y),$ but which aren't linear? I bet you they exist, but I can't think of any examples.
Furthermore, what hypotheses do we need to put on $f$ before no such functions exist? I feel continuity should be enough.
Answer
Yes continuity is enough: You can quickly show that $f(x)=x\cdot f(1)$ for $x\in\mathbb N$, then for $x\in\mathbb Z$ and then for $x\in\mathbb Q$; assuming continuity, this implies validity for all $x\in\mathbb R$.
Any other functions only exist per Axiom of Choice: View $\mathbb R$ as a vector space over $\mathbb Q$ and take any $\mathbb Q$-linear map (which need not be $\mathbb R$-linear).
No comments:
Post a Comment