Let x>1 and a, b be positive integers. I know that a divides b implies that xa−1 divides xb−1. If b=qa, then
xb−1=(xa)q−1q=(xa−1)((xa)q−1+…+xa+1).
I'm interested in the converse of the statement. If xa−1 divides xb−1, does this imply that a divides b?
Answer
Let b=a⋅q+r, where 0<r<a.
Then
xb−1=xb−xr+xr−1=xr(xaq−1)+xr−1.
Use that xa−1 divides xaq−1.
No comments:
Post a Comment