I tried all I know and I always get to ∞, Wolfram Alpha says 32. How should I simplify it?
limx→∞√(x2+3x+4)−x
I tried multiplying by its conjugate, taking the squared root out of the limit, dividing everything by √x2, etc.
Obs.: Without using l'Hôpital's.
Answer
Note that
√x2+3x−4−x=(√x2+3x−4−x)×√x2+3x−4+x√x2+3x−4+x=(√x2+3x−4−x)(√x2+3x−4+x)√x2+3x−4+x=x2+3x−4−x2√x2+3x−4+x=3x−4√x2+3x−4+x=3−4/x√1+3/x−4/x2+1
Now we get
limx→∞√x2+3x−4−x=limx→∞3−4/x√1+3/x−4/x2+1=3−limx→∞4/x1+limx→∞√1+3/x−4/x2=31+1=32
No comments:
Post a Comment