Integrate ∫sin(√at)dt
Here is what I tried.
Let u=√at, then du=a2√atdt=a2udt⟹2udua=dt. So by subsitution,
∫sin(√at)dt=∫sin(u)(2udua)=2a∫usin(u)du.
Again substituting, v=u⟹dv=du,dw=sin(u)du⟹w=−cos(u). So
2a∫ usin(u)du=−ucos(u)+∫cos(u)du=−ucos(u)+sin(u)+C=−√atcos(√at)+sin(√at)+C∫usin(u)du=a2(−√atcos(√at)+sin(√at)).
But the answer is 2a(−√atcos(√at)+sin(√at)). Where did I go wrong here?
Answer
Your mistake is when you write
2a∫ usin(u)du=−ucos(u)+∫cos(u)du=−ucos(u)+sin(u)+C=−√atcos(√at)+sin(√at)+C∫usin(u)du=a2(−√atcos(√at)+sin(√at)).
It is rather
2a∫ usin(u)du=2a(−ucos(u)+∫cos(u)du)=2a(−ucos(u)+sin(u)+C)=2a(−√atcos(√at)+sin(√at)+C)
giving at the end the right answer.
No comments:
Post a Comment