Monday, December 3, 2018

Induction proof for a summation: sumni=1i3=left[sumni=1iright]2


Prove by induction: ni=1i3=[ni=1i]2. Hint: Use k(k+1)2=2(k+1)i.


Basis: n=1 1i=1i3=[1i=1i]213=121=1.


Hypothesis: Assume true for all nk.


So far I have the following:


k+1i=1i3=(k+1)3+ki=1i3



(k+1)3+[ki=1i]2


Answer



For n=k+1, k+1i=1i3=ki=1i3+(k+1)3=(ki=1i)2+(k+1)3=(ki=1i)2+k(k+1)2+(k+1)2


Now using the Hint: k(k+1)2=2(k+1)i.


=(ki=1i)2+2(k+1)ki=1i+(k+1)2=(k+1i=1i)2


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f:AB and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...