Prove by induction: ∑ni=1i3=[∑ni=1i]2. Hint: Use k(k+1)2=2(k+1)∑i.
Basis: n=1 ∑1i=1i3=[∑1i=1i]2→13=12→1=1.
Hypothesis: Assume true for all n≤k.
So far I have the following:
k+1∑i=1i3=(k+1)3+k∑i=1i3
(k+1)3+[k∑i=1i]2
Answer
For n=k+1, k+1∑i=1i3=k∑i=1i3+(k+1)3=(k∑i=1i)2+(k+1)3=(k∑i=1i)2+k(k+1)2+(k+1)2
Now using the Hint: k(k+1)2=2(k+1)∑i.
=(k∑i=1i)2+2(k+1)k∑i=1i+(k+1)2=(k+1∑i=1i)2
No comments:
Post a Comment