Saturday, December 29, 2018

calculus - How do I find this limit without using L'Hôpital's rule?



Finding this limit using L'Hôpital's rule is easy, but how to do it without using L'Hôpital's rule?



limx0(1+sinx)cscxex+1sin(3x)


Answer



We may proceed as follows and reduce the complicated limit expression to a simple one before applying series expansions
L=limx0(1+sinx)cscxex+1sin3x=limx0exp{cscxlog(1+sinx)}exp(1+x)sin3x=limx0exp(1+x){exp(cscxlog(1+sinx)1x)1}sin3x=limx0exp(1+x){exp(cscxlog(1+sinx)1x)1}3x3xsin3x=e3limx0exp{cscxlog(1+sinx)1x}1x=e3limx0et1ttx=e3limx0tx=e3limx0cscxlog(1+sinx)1xx=e3(limx0log(1+sinx)sinxxsinx1)=e3(limx0log(1+sinx)sinxsin2xsinxx1)=e3(limz0log(1+z)zz21)=e3(limz0(zz22+)zz21)=e332=e2



In the above derivation we have z=sinx and t=cscxlog(1+sinx)1x=log(1+sinx)sinx1x=log(1+z)z1x
so that both t and z tend to 0 as x0.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f:AB and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...