Finding this limit using L'Hôpital's rule is easy, but how to do it without using L'Hôpital's rule?
limx→0(1+sinx)cscx−ex+1sin(3x)
Answer
We may proceed as follows and reduce the complicated limit expression to a simple one before applying series expansions
L=limx→0(1+sinx)cscx−ex+1sin3x=limx→0exp{cscxlog(1+sinx)}−exp(1+x)sin3x=limx→0exp(1+x){exp(cscxlog(1+sinx)−1−x)−1}sin3x=limx→0exp(1+x){exp(cscxlog(1+sinx)−1−x)−1}3x⋅3xsin3x=e3limx→0exp{cscxlog(1+sinx)−1−x}−1x=e3limx→0et−1t⋅tx=e3limx→0tx=e3limx→0cscxlog(1+sinx)−1−xx=e3(limx→0log(1+sinx)−sinxxsinx−1)=e3(limx→0log(1+sinx)−sinxsin2x⋅sinxx−1)=e3(limz→0log(1+z)−zz2−1)=e3(limz→0(z−z22+⋯)−zz2−1)=e3⋅−32=−e2
In the above derivation we have z=sinx and t=cscxlog(1+sinx)−1−x=log(1+sinx)sinx−1−x=log(1+z)z−1−x
No comments:
Post a Comment