Monday, December 17, 2018

Explanation on the Proof of W(t)=W(t0)expleft(inttt0texttr(underlineA(s))dsright)



In my study of Floquet Theory, I have been given a sketch proof on the following definition of the Wronskian, W(t)=W(t0)exp(tt0tr(A_(s)) ds).




Proof:x_(t)=x_(t0)+(tt0)x_(t0)+O(tt0)2=x_(t0)+(tt0)A_(t0)x_(t0)+O(tt0)2,
as x_=A_x_ and thus X_=A_X_ where X_ denotes the fundamental matrix.
Now, W(t)=det
Using Taylor expansion:
W(t)=W(t_0)+(t-t_0)W'(t_0)+O(t-t_0)^2. \tag{3} Letting t\rightarrow t_0, W'(t)=W(t)\text{tr}(\underline{A}(t))\implies W(t)=W(t_0)\exp\left(\int_{t_0}^{t} \text{tr}(\underline{A}(s)) \ ds\right)





There are many parts that I do not understand. Are there any resources that could help explain this? For instance, how is the last line derived (where did W'(t) appear from)?


Answer



So, firstly the Taylor series expansion of X(t) near t=t_0 is given by



X(t)=X(t_0)+X'(t_0)(t-t_0)+\mathcal{O}\big((t-t_0)^2\big).



Next, we can use X'(t_0)=A(t_0)X(t_0) to get



X(t)=X(t_0)\big(I+(t-t_0)A(t_0)\big)+\mathcal{O}\big((t-t_0)^2\big).




To take the determinant of both sides, we can use \det(X(t_0)B)=\det(X(t_0))\det B:



\begin{array}{ll} W(t) & =W(t_0)\det\big(I+(t-t_0)A(t_0)+\mathcal{O}((t-t_0)^2)\big). \\ & =W(t_0)\det\big(I+(\color{Red}{t-t_0})\big[\color{Blue}{A(t_0)+\mathcal{O}(t-t_0)}\big]\big) \end{array}



Note when you factor X(t_0) out of \mathcal{O}((t-t_0)^2), you just get \mathcal{O}((t-t_0)^2) since X(t_0) is constant.



Next we can use the fact \det(I+\color{Red}{\varepsilon} \color{Blue}{X})=1+\color{Red}{\varepsilon}\mathrm{tr}(\color{Blue}{X})+\mathcal{O}(\color{Red}{\varepsilon}^2) (which follows from the Leibniz formula for the determinant, itself the final result of expansion by minors), where \varepsilon=t-t_0. Note factoring (t-t_0) out of \mathcal{O}((t-t_0)^2) will be \mathcal{O}(t-t_0), but everything gets absorbed back in the end:



\begin{array}{ll} W(t) & =W(t_0)\big[1+(\color{Red}{t-t_0})\mathrm{tr}\big(\color{Blue}{A(t_0)+\mathcal{O}(t-t_0)}\big)+\mathcal{O}((\color{Red}{t-t_0})^2)\big] \\ & =W(t_0)\big[1+(t-t_0)\mathrm{tr}\,A(t_0)+\mathcal{O}((t-t_0)^2)\big]. \end{array}




On the other hand, the Taylor expansion of W(t) is



W(t)=W(t_0)+W'(t_0)(t-t_0)+\mathcal{O}((t-t_0)^2).



Equating coefficients of (t-t_0) yields W'(t_0)=W(t_0)\mathrm{tr}\,A(t_0). Equivalently, the other expansion of W(t) we can subtract W(t_0) from both sides, divide by t-t_0 to obtain



\frac{W(t)-W(t_0)}{t-t_0}=W(t_0)\mathrm{tr}\,A(t_0)+\mathcal{O}(t-t_0).



Letting t\to t_0 yields W'(t_0)=W(t_0)\mathrm{tr}\,A(t_0). Now replace t_0 with t (since it was arbitrary):




W'(t)=A(t)W(t).



This is a separable ODE which can be solved with the integrating factor method. First divide by W(t) and then notice W'(t)/W(t) is the derivative of \ln W(t), so integrate from t_0 to t:



W'(t)/W(t)=\mathrm{tr}\,A(t)



\ln W(t)-\ln W(t_0)=\int_{t_0}^t \mathrm{tr}\,A(s)\,\mathrm{d}s



Notice so the LHS is \ln(W(t)/W(t_0)), so exponentiate and multiply by W(t_0) to get




W(t)=W(t_0)\exp\left(\int_{t_0}^t \mathrm{tr}\,A(s)\,\mathrm{d}s\right).


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...