Friday, December 28, 2018

probability - Explain why E(X)=inti0nfty(1FX(t)),dt for every nonnegative random variable X



Let X be a non-negative random variable and FX the corresponding CDF. Show, E(X)=0(1FX(t))dt when X has : a) a discrete distribution, b) a continuous distribution.



I assumed that for the case of a continuous distribution, since FX(t)=P(Xt), then 1FX(t)=1P(Xt)=P(X>t). Although how useful integrating that is, I really have no idea.


Answer



For every nonnegative random variable X, whether discrete or continuous or a mix of these, X=X0dt=+01X>tdt=+01X hence



\mathrm E(X)=\int_0^{+\infty}\mathrm P(X\gt t)\,\mathrm dt=\int_0^{+\infty}\mathrm P(X\geqslant t)\,\mathrm dt.





Likewise, for every p>0, X^p=\int_0^Xp\,t^{p-1}\,\mathrm dt=\int_0^{+\infty}\mathbf 1_{X\gt t}\,p\,t^{p-1}\,\mathrm dt=\int_0^{+\infty}\mathbf 1_{X\geqslant t}\,p\,t^{p-1}\,\mathrm dt, hence



\mathrm E(X^p)=\int_0^{+\infty}p\,t^{p-1}\,\mathrm P(X\gt t)\,\mathrm dt=\int_0^{+\infty}p\,t^{p-1}\,\mathrm P(X\geqslant t)\,\mathrm dt.



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...