Here is a problem from Gelfand's Trigonometry:
Let α,β,γ be any angle, show that sin(α−β)+sin(α−γ)+sin(β−γ)=4cos(α−β2)sin(α−γ2)cos(β−γ2).
I have tried to worked through this problem but cannot complete it. If I let A=α−β, B=β−γ and C=β−γ, and A+B+C=π (now A, B and C are angles of a triangle), then I could prove the equality. But without this condition, I am stuck.
Could you show me how to complete this exercise?
Answer
\begin{align} \color{#C00}{\sin(x)+\sin(y)}+\color{#090}{\sin(x+y)} &=\color{#C00}{2\sin\left(\frac{x+y}2\right)\cos\left(\frac{x-y}2\right)}+\color{#090}{2\sin\left(\frac{x+y}2\right)\cos\left(\frac{x+y}2\right)}\\ &=2\sin\left(\frac{x+y}2\right)\left[\cos\left(\frac{x-y}2\right)+\cos\left(\frac{x+y}2\right)\right]\\ %&=2\sin\left(\frac{x+y}2\right)\,\color{#00F}{2\cos\left(\frac x2\right)\cos\left(\frac y2\right)}\\ %&=4\sin\left(\frac{x+y}2\right)\cos\left(\frac x2\right)\cos\left(\frac y2\right) \end{align}
Finish off by using the formula for the cosine of a sum/difference, then set x=α−β and y=β−γ.
No comments:
Post a Comment