Friday, June 15, 2018

trigonometry - Prove sin(alphabeta)+sin(alphagamma)+sin(betagamma)=4cosfracalphabeta2sinfracalphagamma2cosfracbetagamma2




Here is a problem from Gelfand's Trigonometry:




Let α,β,γ be any angle, show that sin(αβ)+sin(αγ)+sin(βγ)=4cos(αβ2)sin(αγ2)cos(βγ2).




I have tried to worked through this problem but cannot complete it. If I let A=αβ, B=βγ and C=βγ, and A+B+C=π (now A, B and C are angles of a triangle), then I could prove the equality. But without this condition, I am stuck.



Could you show me how to complete this exercise?


Answer




\begin{align} \color{#C00}{\sin(x)+\sin(y)}+\color{#090}{\sin(x+y)} &=\color{#C00}{2\sin\left(\frac{x+y}2\right)\cos\left(\frac{x-y}2\right)}+\color{#090}{2\sin\left(\frac{x+y}2\right)\cos\left(\frac{x+y}2\right)}\\ &=2\sin\left(\frac{x+y}2\right)\left[\cos\left(\frac{x-y}2\right)+\cos\left(\frac{x+y}2\right)\right]\\ %&=2\sin\left(\frac{x+y}2\right)\,\color{#00F}{2\cos\left(\frac x2\right)\cos\left(\frac y2\right)}\\ %&=4\sin\left(\frac{x+y}2\right)\cos\left(\frac x2\right)\cos\left(\frac y2\right) \end{align}
Finish off by using the formula for the cosine of a sum/difference, then set x=αβ and y=βγ.



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f:AB and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...