Saturday, June 2, 2018

abstract algebra - Degree of field extensions in $mathbb{Q}$ with two algebraic elements



I've got a question regarding the degree of field extensions.



The question is as follows: given two algebraic elements $\alpha, \beta \in \mathbb{Q}$, assume that $[\mathbb{Q}(\alpha):\mathbb{Q}]$ and $[\mathbb{Q}(\beta):\mathbb{Q}]$ are relatively prime. Show that $[\mathbb{Q}(\alpha, \beta):\mathbb{Q}] = [\mathbb{Q}(\alpha):\mathbb{Q}]\cdot [\mathbb{Q}(\beta):\mathbb{Q}]$.



We know that both $[\mathbb{Q}(\alpha):\mathbb{Q}]$ and $[\mathbb{Q}(\beta):\mathbb{Q}]$ are finite because $\alpha$ and $\beta$ are algebraic, so we could say $[\mathbb{Q}(\alpha):\mathbb{Q}] = n$ and $[\mathbb{Q}(\beta):\mathbb{Q}] =m$. We also know that $[\mathbb{Q}(\alpha, \beta):\mathbb{Q}]$ is finite. I'm assuming I have to use that given a field $K$ and two field extensions $L,M$ where $K \subset L \subset M$, we have $[M:K]=[M:L]\cdot[L:K]$. But I'm not sure what to do next, because I don't know how to show that these extensions match these criteria.


Answer




Hint:




  • $[\mathbb{Q}(\alpha, \beta):\mathbb{Q}]$ is a common multiple of $[\mathbb{Q}(\alpha):\mathbb{Q}]$ and $[\mathbb{Q}(\beta):\mathbb{Q}]$


  • $[\mathbb{Q}(\alpha, \beta):\mathbb{Q}(\alpha)] \le [\mathbb{Q}(\beta):\mathbb{Q}]$



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...