Find the value of the limit limn→∞n((∫1011+xndx)n−12)
I can't solve the integral ∫1011+xndx. But maybe the questions doesn't require solving the integral.
Apparently the limn→∞(∫1011+xndx)n should be 12 for the question to make sense. That's all I know.
Answer
Let I(n) be given by the integral
I(n)=∫1011+xndx
Then, expanding the integrand of the integral on the right-hand side of (1) in the Taylor series 11+xn=∑∞k=0(−1)kxnk reveals
I(n)=∞∑k=0(−1)knk+1=1+1n∞∑k=1(−1)kk+1/n
Next, using the fact that log(2)=∑∞k=1(−1)k−1k and that π212=−∑∞k=1(−1)kk2, we can write the series in (2) as
∞∑k=1(−1)kk+1/n=−log(2)+∞∑k=1(−1)k(1k+1/n−1k)=−log(2)−1n∞∑k=1(−1)kk(k+1/n)=−log(2)−1n∞∑k=1(−1)kk2−1n∞∑k=1(−1)k(1k(k+1/n)−1k2)=−log(2)+π212n+O(1n2)
Using (1)−(3) yields
I(n)=1−log(2)n+π212n2+O(1n3)
Next, using (4), we can write
(I(n))n=enlog(1−log(2)n+π212n2+O(1n3))=e−log(2)+π212n−log2(2)2n+O(1n2)=12(1+π212n−log2(2)2n+O(1n2))
Finally, we have
\begin{align} \lim_{n\to \infty}\left(n\left(\left(I(n)\right)^n-\frac12\right)\right)&=\lim_{n\to \infty}\left(\frac{\pi^2}{24}-\frac{\log^2(2)}{4}+O\left(\frac1n\right)\right)\\\\ &=\bbox[5px,border:2px solid #C0A000]{\frac{\pi^2}{24}-\frac{\log^2(2)}{4}} \end{align}
And we are done!
No comments:
Post a Comment