$\lim_{n\rightarrow \infty} \sum_{i=0}^{n}\frac{e^{-n}n^{i}}{i!}\rightarrow \frac{1}{2}$
Tried:
here suppose N is poission distribution with parameter n
$\lim_{n\rightarrow \infty} \sum_{i=0}^{n} P(N\geq i) $
$= \lim_{n\rightarrow \infty} \sum_{i=0}^{n}(P(N=i)+P(N>i) + P(N
$= \lim_{n\rightarrow \infty} \sum_{i=0}^{n}(P(N= i)+P(i
No comments:
Post a Comment