Sunday, October 9, 2016

real analysis - Calculate $lim_{nto{+}infty}{(sqrt{n^{2}+n}-n)}$











Could someone help me through this problem?
Calculate $\displaystyle\lim_{n \to{+}\infty}{(\sqrt{n^{2}+n}-n)}$


Answer



We have:




$$\sqrt{n^{2}+n}-n=\frac{(\sqrt{n^{2}+n}-n)(\sqrt{n^{2}+n}+n)}{\sqrt{n^{2}+n}+n}=\frac{n}{\sqrt{n^{2}+n}+n}$$
Therefore:



$$\sqrt{n^{2}+n}-n=\frac{1}{\sqrt{1+\frac{1}{n}}+1}$$



And since: $\lim\limits_{n\to +\infty}\frac{1}{n}=0$



It follows that:



$$\boxed{\,\,\lim\limits_{n\to +\infty}(\sqrt{n^{2}+n}-n)=\dfrac{1}{2}\,\,}$$



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...