I'm trying to compute:
∞∑m=0∞∑n=01Γ(m+n2)Γ(1+m+n2)
(From CMJ)
Using the duplication formula:
Γ(x)Γ(x+12)=√π22x−1Γ(2x)
1Γ(m+n2)Γ(1+m+n2)=1√π2m+n−1Γ(m+n)=1√π2m+n−1(m+n−1)!
So:
∞∑m=01Γ(m+n2)Γ(1+m+n2)=1√π∞∑m=02m+n−1(m+n−1)!=1√π∞∑m=n−12mm!
1√π∞∑m=n−12mm!∼n→∞1√π2n−1(n−1)!
The series ∑n≥11√π2n−1(n−1)!
is convergent so:
∞∑m=0∞∑n=01Γ(m+n2)Γ(1+m+n2)=1√π∞∑n=1∞∑m=n−12mm!
Is there a simple way to compute this quantity?
Answer
Rearranging the terms and putting those with k=m+n together (and leaving out the one where k=0), we get
∞∑m=0∞∑n=01Γ(m+n2)Γ(1+m+n2)=∞∑m=0∞∑n=02m+n−1Γ(m+n)√π
=∞∑k=1(k+1)2k−1(k−1)!√π=∞∑k=1(k−1)2k−1(k−1)!√π+2∞∑k=12k−1(k−1)!√π
=2√π∞∑k=22k−2(k−2)!+2√πe2=4e2√π.
No comments:
Post a Comment