Let R0 be a real number and n an arbitrary integer
2π∫0cos(narctan(R0sin(ϑ)))cos(narctan(R0cos(ϑ)))dϑ.
I have tried using 2cos(a)cos(b)=cos(a+b)+cos(a−b), and also some substitutions. I would like to know how this integral behave with respect to R0.
E.g. you can get something like
2π∫0cos(nϑ)cos(narctan(√R20−tan2(ϑ)))1+tan2(ϑ)√R20−tan2(ϑ))dϑ.
I expect Bessel integrals to turn up, but I am not sure about this.
This question is related, but less specific:
An integral involving trigonometric functions and its inverse
Answer
Note that, using invariance of the integrand under θ→π2+θ for 0<θ<π2:
In(ρ)=∫2π0cos(narctan(ρsin(θ)))cos(narctan(ρcos(θ)))dθ=4∫π/20cos(narctan(ρsin(θ)))cos(narctan(ρcos(θ)))dθ
Now change the variables, with sin(θ)=x:
In(ρ)=4∫10cos(narctan(ρx))cos(narctan(ρ√1−x2))dx√1−x2
Now, we use, for 0<ρ<1, arctan(ρx)=arccos(1√1+x2ρ2), arctan(ρ√1−x2)=arccos(1√1+ρ2−x2ρ2), and, for n∈Z⩾:
\cos\left(n \arccos\left( \frac{1}{\sqrt{1+ x^2 \rho^2}}\right) \right) = T_{n}\left(\frac{1}{\sqrt{1+ x^2 \rho^2}}\right)
Now using explicit expression for Chebyshev polynomial T_n(z):
\cos\left(n \arccos\left( \frac{1}{\sqrt{1+ x^2 \rho^2}}\right) \right) = \frac{1}{2} \left( 1 + x^2 \rho^2 \right)^{n/2} \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2k} \left(-x^2 \rho^2\right)^k
This allows to compute the integral for even values of n, relatively easily:
\mathcal{I}_{2n}(\rho)= \sum_{k=0}^{n} \sum_{m=0}^n \int_0^1 \frac{(1+x^2 \rho^2)^{n} (1+(1-x^2) \rho^2)^{n}}{\sqrt{1-x^2}} (-x^2 \rho^2)^{k} ( (x^2-1) \rho^2)^{m} \mathrm{d} x
Here are values, obtained for few low even values of n:
\mathcal{I}_2(\rho) = \frac{\pi \left(\rho ^4+\left(3-4 \sqrt{\rho ^2+1}\right) \rho ^2+2\right)}{2 \left(\rho ^4+3 \rho ^2+2\right)}
\mathcal{I}_4(\rho) = -\frac{4 \pi \rho ^2 \left(\rho ^6-2 \rho ^4+4 \rho ^2+8\right)}{\left(\rho^2+1\right)^{3/2} \left(\rho ^2+2\right)^3}
\mathcal{I}_6(\rho) = -\frac{2 \pi \rho ^2 \left(3 \rho ^{12}-26 \rho ^{10}+137 \rho ^8+152 \rho ^6-152 \rho ^4+144\right)}{\left(\rho ^2+1\right)^{5/2} \left(\rho ^2+2\right)^5}
No comments:
Post a Comment