Let gcd(a,b,c)=1 such that a^2, b^2, c^2 are in arithmetic progression. Show they can be written in the form
a=-p^2+2pq+q^2
b=p^2+q^2
c=p^2+2pq-q^2
for relatively prime integers p,q of different parities.
so if a^2, b^2, c^2 are in arithmetic progression, then a^2=x, b^2=x+d, c^2=x+2d, for x,d\in\mathbb{Z}
That means x+x+d=x+d+d \Rightarrow 2x+d=x+2d \Rightarrow x=d.
So then a^2=x, b^2=2x, c^2=3x
Now with primitive pythagorean triples, we have (2pq, p^2-q^2, p^2+q^2). I just don't see how to go from here....i'm sure it's easy, but I'm not seeing something.
Since a^2, b^2, c^2 are in arithmetic progression, a^2+c^2=2b^2. If a is even, then so is c, so 4 \mid a^2+c^2=2b^2, so b is also even, giving a contradiction.
Thus a is odd. Similarly c is odd, so b is also odd.
(a-b)(a+b)=a^2-b^2=b^2-c^2=(b-c)(b+c)
\frac{a-b}{2}\frac{a+b}{2}=\frac{b-c}{2}\frac{b+c}{2}
By factoring lemma, there exists integers w, x, y, z such that \frac{a-b}{2}=wx, \frac{a+b}{2}=yz, \frac{b-c}{2}=wy, \frac{b+c}{2}=xz. Now
a=wx+yz, b=yz-wx=wy+xz, c=xz-wy
y(z-w)=x(z+w). Again by factoring lemma, there exists integers d, e, f, g such that y=de, z-w=fg, x=df, z+w=eg. Now
z=\frac{eg+fg}{2}=g\frac{e+f}{2}, w=\frac{eg-fg}{2}=g\frac{e-f}{2} a=wx+yz=dfg\frac{e-f}{2}+deg\frac{e+f}{2}=\frac{dg}{2}(e^2+2ef-f^2) b=wy+xz=deg\frac{e-f}{2}+dfg\frac{e+f}{2}=\frac{dg}{2}(e^2+f^2) c=xz-wy=dfg\frac{e+f}{2}-deg\frac{e-f}{2}=\frac{dg}{2}(-e^2+2ef+f^2)
If dg is divisible by 4 or an odd prime p, then a, b, c will not be relatively prime. Thus dg=\pm 1 or \pm 2.
If dg=\pm 2, then a=\pm (e^2+2ef-f^2), b=\pm (e^2+f^2), c=\pm (-e^2+2ef+f^2). Clearly \gcd(e, f) \mid \gcd(a, b, c)=1, so e, f are relatively prime. If e, f have the same parity, then a, b, c are all even, a contradiction, so e, f have different parities.
If dg= \pm 1, then a=\pm \frac{e^2+2ef-f^2}{2}, b=\pm \frac{e^2+f^2}{2}, c=\pm \frac{-e^2+2ef+f^2}{2}. Thus e, f must have the same parity. Put e+f=2p, e-f=2q, then e=p+q, f=p-q, and
a=\pm \frac{e^2+2ef-f^2}{2}=\pm \frac{(p+q)^2+2(p+q)(p-q)-(p-q)^2}{2}=\pm (p^2+2pq-q^2) b=\pm \frac{e^2+f^2}{2}=\pm \frac{(p+q)^2+(p-q)^2}{2}=\pm (p^2+q^2) c=\pm \frac{-e^2+2ef+f^2}{2}=\pm \frac{-(p+q)^2+2(p+q)(p-q)+(p-q)^2}{2}=\mp(-p^2+2pq+q^2)
Again, p, q must be relatively prime and be of different parities.
Finally, combining the 2 cases, a, b, c can be written as
a=\epsilon_a (p^2+2pq-q^2), b=\epsilon_b (p^2+q^2), c=\epsilon_c (-p^2+2pq+q^2)
where each \epsilon_a, \epsilon_b, \epsilon_c are 1 or -1.