Sunday, March 17, 2019

convergence divergence - Closed form of :$S n,m= sum_{k=1}^n (-1)^kbinom{n}{k}k^{-m!}$



I don't succed to get a closed form of the bellow sum using standard Binomial law , in order to know if this sum could be converge or not for $n\to +\infty$ ,is there any simple way or any algorithm to eavaluate the bellow sum :



$$S n,m=
\sum_{k=1}^n (-1)^k\binom{n}{k}k^{-m!}$$

?


Answer



The convergence of $S_{n,m}$ can easily be determined when applying the so-called Dilcher's fromula



$$
\sum_{1\le n_1\le\cdots\le n_M\le n}\;\prod_{j=1}^{M}\frac{1}{n_j}
=\sum_{k=1}^{n}\binom{n}{k}\cdot\frac{(-1)^{k-1}}{k^M},
$$



where $M,n\in\mathbb N$ (for more detail, see http://mathworld.wolfram.com/DilchersFormula.html).




Finally, set $M=m!$, $m\in\mathbb N$, to obtain



$$
-S_{n,m}
=\sum_{1\le n_1\le\cdots\le n_{m!}\le n}\;\prod_{j=1}^{m!}\frac{1}{n_j}
\ge\sum_{k=1}^{n}\frac{1}{k}.
$$



Consequently, one deduces that $S_{n,m}\to -\infty$ as $n\to\infty$.



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...