Friday, March 15, 2019

combinatorics - Where does the following formula come from?




Where does the following formula come from?



For a Laurent polynomial f(z)=ajzj and a positive integer n we have \sum_{k\equiv \alpha\pmod n} a_k=\frac1n\sum_{\omega:\omega^n=1} \omega^{-\alpha}f(\omega).



I hope someone can answer this question or give some refferences about it ! Thanks a lot!


Answer



first we shall see that:



\frac1n\sum_{\omega:\omega^n=1} \omega^{-\alpha}f(\omega) = \frac1n\sum_{\omega:\omega^n=1}\omega^{-\alpha }\sum_{j}a_j\omega^j = \frac1n\sum_{\omega:\omega^n=1}\sum_{j}\omega^{j-\alpha }a_j =




= \frac1n\sum_{j}\sum_{\omega:\omega^n=1}\omega^{j-\alpha }a_j



I'm leaving for you to think why we can preform the last move (change the order).
also put notice that \omega^{j-\alpha} = 1 \iff j \equiv \alpha \ (mod \ n) and also because there are n roots of unity in \mathbb{C} we get:



\frac1n\sum_{j}\sum_{\omega:\omega^n=1}\omega^{j-\alpha }a_j = \frac1n\sum_{j \equiv \alpha (mod \ n)}\sum_{\omega:\omega^n=1}a_j + \frac1n\sum_{j \neq \alpha (mod \ n)}\sum_{\omega:\omega^n=1}\omega^{j-\alpha }a_j = \sum_{j \equiv \alpha (mod \ n)} \frac{n}{n} a_j + \frac1n\sum_{j \neq \alpha (mod \ n)}a_j\sum_{\omega:\omega^n=1}\omega^{j-\alpha }



but we know that $\forall \ 0

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...