Sunday, December 2, 2018

radicals - How do I get the square root of a complex number?



If I'm given a complex number (say $9 + 4i$), how do I calculate its square root?


Answer



The square root is not a well defined function on complex numbers. Because of the fundamental theorem of algebra, you will always have two different square roots for a given number. If you want to find out the possible values, the easiest way is probably to go with De Moivre's formula, that is, converting your number into the form $r(\cos(\theta) + i \sin(\theta))$, and then you will get $(r(\cos(\theta)+ i \sin(\theta)))^{1/2} = ±\sqrt{r}(\cos(\theta/2) + i \sin(\theta/2))$.



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...