Friday, April 6, 2018

trigonometry - Prove that $cosfrac {2pi}{7}+ cosfrac {4pi}{7}+ cosfrac {8pi}{7}=-frac{1}{2}$



Prove that $$\cos\frac {2\pi}{7}+ \cos\frac {4\pi}{7}+ \cos\frac {8\pi}{7}=-\frac{1}{2}$$



My attempt


\begin{align} \text{LHS}&=\cos\frac{2\pi}7+\cos\frac{4\pi}7+\cos\frac{8\pi}7\\ &=-2\cos\frac{4\pi}7\cos\frac\pi7+2\cos^2\frac{4\pi}7-1\\ &=-2\cos\frac{4\pi}7\left(\cos\frac\pi7-\cos\frac{4\pi}7\right)-1 \end{align} Now, please help me to complete the proof.



Answer



$cos(2\pi/7)$+$cos(4\pi/7)$+$cos(8\pi/7)$


= $cos(2\pi/7)$+$cos(4\pi/7)$+$cos(6\pi/7)$ (angles add to give $2\pi$, thus one is $2\pi$ minus the other)


At this point, we'll make an observation


$cos(2\pi/7)$$sin(\pi/7)$ = $\frac{sin(3\pi/7) - sin(\pi/7)}{2}$ ..... (A)


$cos(4\pi/7)$$sin(\pi/7)$ = $\frac{sin(5\pi/7) - sin(3\pi/7)}{2}$ ..... (B)


$cos(6\pi/7)$$sin(\pi/7)$ = $\frac{sin(7\pi/7) - sin(5\pi/7)}{2}$ ..... (C)


Now, add (A), (B) and (C) to get


$sin(\pi/7)*(cos(2\pi/7)+cos(4\pi/7)+cos(6\pi/7))$ = $\frac{sin(7\pi/7) - sin(\pi/7)}{2}$ = -$sin(\pi/7)/2$


The $sin(\pi/7)$ cancels out from both sides to give you your answer.



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...