I am trying to compute the following integral:
$$\int x^2 \cos \frac{x}{2} \mathrm{d}x$$
I know this requires integration by parts multiple times but I am having trouble figuring out what to do once you have integrated twice. This is what I have done:
Let $u = \cos \frac{x}{2}$ and $\mathrm{d}u = \frac{-\sin\left(\dfrac{x}{2}\right)}{2} \mathrm{d}x$ and $\mathrm{d}v = x^2$ and $v= \frac{x^3}{3}$.
\begin{align}
&\int x^2 \cos \frac{x}{2} \\
&\cos \frac{x}{2} \cdot \frac{x^3}{3} - \int \frac{x^3}{3} \cdot \frac{-\sin\left(\dfrac{x}{2}\right)}{2} \mathrm{d}x
\end{align}
So now I integrate $\int \frac{x^3}{3} \cdot \frac{-\sin\left(\dfrac{x}{2}\right)}{2} \mathrm{d}x$ to get:
\begin{align}
\frac{-\sin\left(\dfrac{x}{2}\right)}{2} \cdot \frac{x^4}{12} - \int \frac{x^4}{12} \cdot \frac{\cos x}{2}
\end{align}
Now, this is where I get stuck. I know if I continue, I will end up with $\frac{-\sin\left(\dfrac{x}{2}\right)}{2}$ again when I integrate $\cos \frac{x}{2}$. So, where do I go from here?
Thanks!
Answer
$$\int x^2 \cos \frac{x}{2} \mathrm{d}x$$
Let $u = x^2$ and $\mathrm{d}u = 2x\,dx$ and let $dv = \cos\frac x2\,dx \implies v = 2 \sin \frac x2 $.
$$ 2x^2 \sin \frac x2 - \int 2x\cdot 2\sin \frac x2\,dx $$
You'll only need to do integration by parts one additional time. Let me know if you get stuck after that.
No comments:
Post a Comment