Monday, April 9, 2018

real analysis - Proving inti0nftyfracsin(x)xdx=fracpi2. Why is this step correct?


I came across a different approach on the proof: 0sin(x)x dx=π2 First, recall the identity: sin(A)sin(B)=2sin(A2B2)cos(A2+B2) Applying the identity for: A=kx+x2  B=kxx2 We obtain:sin(kx+x2)sin(kxx2)=2sin(x2)cos(kx)cos(kx)=sin(kx+x2)sin(kxx2)2sin(x2) Using the previous result, we can easily show that: 12+cos(x)+cos(2x)++cos(λx)=sin(λx+x2)2sin(x2)where λN Integrating the last expression: π0sin(λx+x2)sin(x2) dx=π0(1+2cos(x)+2cos(2x)++2cos(λx)) dx=π We can also prove (since f(x) is continuous on [0,π]), using Riemann-Lebesgue Lemma, that: lim Therefore: \left(1\right)\ \lim_{\lambda\to\infty}\int_0^\pi\frac{2\sin\left(\lambda t+\frac{t}2\right)}t=\lim_{\lambda\to\infty}\int_0^\pi\frac{\sin\left(\lambda t+\frac{t}2\right)}{\sin\left(\frac{t}2\right)}=\pi Returning to the initial problem: \\ Let: x=\lambda t+\frac{t}2 Thus: \int_0^\infty \frac{\sin(x)}x\ dx \stackrel{\eqref{*}}=\frac12\lim_{\lambda\to\infty}\int_0^{\color{teal}{\pi}}\frac{2\sin\left(\lambda t+\frac{t}2\right)}{t}\ dt Using the result obtained from (1):\int_0^\infty \frac{\sin(x)}x\ dx=\boxed{\frac{\pi}2} My question comes from \color{teal}{(???)}, Why is it correct to have \pi instead of \infty when changing the limits of integration?


Answer




Let x = (\lambda + \frac{1}{2}) t. Then \int_0^T \frac{\sin((\lambda + \frac{1}{2}) t)}{t} \mathrm{d}t = \int_0^{(\lambda + \frac{1}{2}) T} \frac{\sin(x)}{\frac{x}{\lambda + \frac{1}{2}}}\frac{\mathrm{d}x}{(\lambda + \frac{1}{2})}=\int_0^{(\lambda + \frac{1}{2}) T} \frac{\sin(x)}{x} \mathrm{d}x Take the limit: \lim_{\lambda\to\infty} \int_0^{(\lambda + \frac{1}{2}) T} \frac{\sin(x)}{x} \mathrm{d}x = \int_0^{\infty} \frac{\sin(x)}{x} \mathrm{d}x


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...