Find the value of
lim
My work:
\bigg(1+\dfrac{1}{n}\bigg)=\bigg\{\bigg(1+\dfrac{1}{n}\bigg)^n\bigg\}^{\frac{1}{n}}=e^{\frac{1}{n}}
\bigg(1+\dfrac{2}{n}\bigg)^{\frac12}=\bigg\{\bigg(1+\dfrac{2}{n}\bigg)^{\frac{n}{2}}\bigg\}^{\frac{1}{n}}=e^{2\cdot\frac12\cdot\frac{1}{n}}=e^\frac{1}{n}
~~~~~~~~~~~~\vdots
~~~~~~~~~~~~\vdots
\bigg(1+\dfrac{n}{n}\bigg)^{\frac{1}{n}}=e^{\frac{1}{n}}
So, L=e
But, the answer says L=e^{\frac{\pi^2}{12}}.
I do not know where I am going wrong, is the answer a typo or I am doing wrong. Please help.
Answer
This seems to be the reasoning in your argument
\begin{align} \lim_{n\to\infty}\prod_{k=1}^n\left(1+\frac kn\right)^{1/k} &=\lim_{n\to\infty}\left(\prod_{k=1}^n\left(1+\frac kn\right)^{n/k}\right)^{1/n}\tag{1}\\ &=\lim_{n\to\infty}\left(\prod_{k=1}^n\lim_{n\to\infty}\left[\left(1+\frac kn\right)^{n/k}\right]\right)^{1/n}\tag{2}\\ &=\lim_{n\to\infty}\left(\prod_{k=1}^n\ e\right)^{1/n}\tag{3}\\[12pt] &=\ e\tag{4} \end{align}
All of the steps are fine except (2). It is not, in general, allowed to take the limit of an inner part like that. For example consider
\begin{align} \lim_{n\to\infty}\left(\frac1n\cdot n\right) &=\lim_{n\to\infty}\left(\lim_{n\to\infty}\left[\frac1n\right] n\right)\tag{5}\\ &=\lim_{n\to\infty}\left(0\cdot n\right)\tag{6}\\[3pt] &=\lim_{n\to\infty}\ 0\tag{7}\\[2pt] &=\ 0\tag{8} \end{align}
Step (5) is the same as step (2), but that step allows us to show that 1=0.
To see why this affects your limit adversely, notice that no matter how big n gets in the limit, when k is near n, \left(1+\frac kn\right)^{n/k} is close to 2, not e. Thus, the terms of the product are between 2 and e. Not all of them tend to e.
What we need to do is use the continuity of \log(x) as viplov_jain suggests.
\begin{align} \log\left(\lim_{n\to\infty}\prod_{k=1}^n\left(1+\frac kn\right)^{1/k}\right) &=\lim_{n\to\infty}\log\left(\prod_{k=1}^n\left(1+\frac kn\right)^{1/k}\right)\tag{9}\\ &=\lim_{n\to\infty}\sum_{k=1}^n\frac1k\log\left(1+\frac kn\right)\tag{10}\\ &=\lim_{n\to\infty}\sum_{k=1}^n\frac nk\log\left(1+\frac kn\right)\frac1n\tag{11}\\ &=\int_0^1\frac1x\log(1+x)\,\mathrm{d}x\tag{12}\\ &=\int_0^1\sum_{k=0}^\infty(-1)^k\frac{x^k}{k+1}\,\mathrm{d}x\tag{13}\\ &=\sum_{k=0}^\infty\frac{(-1)^k}{(k+1)^2}\tag{14}\\ &=\frac{\pi^2}{12}\tag{15} \end{align}
Step (12) uses the idea of approximating a Riemann Sum by an integral. (15) tells us that
\lim_{n\to\infty}\prod_{k=1}^n\left(1+\frac kn\right)^{1/k}=e^{\pi^2/12}\tag{16}
Notice that
2\lt2.27610815162573\doteq e^{\pi^2/12}\lt e\tag{17}
No comments:
Post a Comment