Sum of series $\displaystyle \frac{15}{16}+\frac{15}{16}\cdot\frac{21}{24}+\frac{15}{16}\cdot\frac{21}{24}\cdot \frac{27}{32}+\cdots\cdots $
what i try
$\displaystyle S =\frac{15}{16}+\frac{15\cdot 21}{16\cdot 24}+\frac{15\cdot 21\cdot 27}{16\cdot 24\cdot 32}+\cdots \cdots $
i am trying to convert numerator and denomiantor terms into arithmetic progression
$\displaystyle \frac{9S}{8}=\frac{9\cdot 15}{8\cdot 16}+\frac{9\cdot 15\cdot 21}{8\cdot 16\cdot 24}+\cdots \cdots $
$\displaystyle \frac{9S}{8}+\frac{9}{8}+1=1+\frac{9}{8}+\frac{9\cdot 15}{8\cdot 16}+\frac{9\cdot 15\cdot 21}{8\cdot 16\cdot 24}+\cdots \cdots $
but it is divergent series
i did not know how i solve that infinite series
Help me how to solve
Answer
Based on the hint of lab bhattacharjee
$$S=\frac{5}{2}\left(\frac{3}{8}\right)+\frac{5\cdot7}{2\cdot3}\left(\frac{3}{8}\right)^2+\frac{5\cdot7\cdot9}{2\cdot3\cdot4}\left(\frac{3}{8}\right)^3+ \cdots\\
=\frac{4}{3}\cdot\frac{2}{3}\sum_{n=2}^\infty
\frac{-\frac{3}{2}\left(-\frac{3}{2}-1\right)\cdots\left(-\frac{3}{2}-n+1\right)}{n!}\left(-\frac{3}{4}\right)^n\\
=\frac{8}{9}\left[\left(1-\frac{3}{4}\right)^{-\frac{3}{2}}-1-\frac{-\frac{3}{2}}{1!}\left(-\frac{3}{4}\right)\right]\\=\frac{8}{9}\left[8-1-\frac{9}{8}\right]=\frac{47}{9}.
$$
Generally for arbitrary $a\in\mathbb{R}_+$, $k\in\mathbb{Z}_+$, $|x|<1$:
$$
\sum_{N=1}^\infty \prod_{n=1}^N\left(1+\frac{a-1}{k+n}\right)x=
\frac{k!}{a(a+1)\cdots(a+k-1)x^k}\sum_{N=k+1}^\infty\frac{a(a+1)\cdots(a+N-1)}{N!}x^N\\
=\left[\binom{a+k-1}{k}x^k\right]^{-1}\left[\left(1-x\right)^{-a}-\sum_{N=0}^k\binom{a+N-1}{N}x^N\right].
$$
For your problem: $a=\frac{3}{2}$, $k=1$, $x=\frac{3}{4}$.
Note:
$$
\binom{a}{k}:=\frac{1}{k!}\prod_{i=0}^{k-1} (a-i);\quad
\binom{a+k-1}{k}x^k\equiv \binom{-a}{k}(-x)^k.
$$
No comments:
Post a Comment