Sum of series 1516+1516⋅2124+1516⋅2124⋅2732+⋯⋯
what i try
S=1516+15⋅2116⋅24+15⋅21⋅2716⋅24⋅32+⋯⋯
i am trying to convert numerator and denomiantor terms into arithmetic progression
9S8=9⋅158⋅16+9⋅15⋅218⋅16⋅24+⋯⋯
9S8+98+1=1+98+9⋅158⋅16+9⋅15⋅218⋅16⋅24+⋯⋯
but it is divergent series
i did not know how i solve that infinite series
Help me how to solve
Answer
Based on the hint of lab bhattacharjee
S=52(38)+5⋅72⋅3(38)2+5⋅7⋅92⋅3⋅4(38)3+⋯=43⋅23∞∑n=2−32(−32−1)⋯(−32−n+1)n!(−34)n=89[(1−34)−32−1−−321!(−34)]=89[8−1−98]=479.
Generally for arbitrary a∈R+, k∈Z+, |x|<1:
∞∑N=1N∏n=1(1+a−1k+n)x=k!a(a+1)⋯(a+k−1)xk∞∑N=k+1a(a+1)⋯(a+N−1)N!xN=[(a+k−1k)xk]−1[(1−x)−a−k∑N=0(a+N−1N)xN].
For your problem: a=32, k=1, x=34.
Note:
(ak):=1k!k−1∏i=0(a−i);(a+k−1k)xk≡(−ak)(−x)k.
No comments:
Post a Comment