Let $n,\alpha\in\mathbb{N},\beta\in\mathbb{N}_0$, and let $p$ be odd prime number s.t. $p^\beta|n$.
How do we prove that $p^{\alpha+\beta+1}|{n\choose k}p^{k\alpha}$ for every $k\in\{1,2,\ldots,n-1\}$?
Let $n,\alpha\in\mathbb{N},\beta\in\mathbb{N}_0$, and let $p$ be odd prime number s.t. $p^\beta|n$.
How do we prove that $p^{\alpha+\beta+1}|{n\choose k}p^{k\alpha}$ for every $k\in\{1,2,\ldots,n-1\}$?
I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...
No comments:
Post a Comment