Friday, March 23, 2018

calculus - What is $limlimits_{k to 0}{f(k) = 2 + k^{frac{3}{2}}cos {frac{1}{k^2}}}$

Just want to check this one:



I got:



$$\displaystyle \lim_{k \to 0}{f(k) = 2} \;+\; \lim_{k \to 0}{k^{\frac{3}{2}}\cos {\frac{1}{k^2}}}$$



Since $\lim\limits_{k \to 0}\cos{\frac{1}{k^2}} = 0$, using the squeeze theorem, I have $\lim\limits_{k \to 0} k^{\frac{3}{2}}\cos{\frac{1}{k^2}} = 0$.



So
$$\begin{align*}

\lim_{k \to 0}f(k) &= 2 + \lim_{k \to 0}k^{\frac{3}{2}}\cos\left(\frac{1}{k^2}\right)\\
&= 2 + 0\\
&= 2
\end{align*}$$



Is this correct?



Thanks!

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...