Friday, November 10, 2017

real analysis - I want to show that $f(x)=x.f(1)$ where $f:Rto R$ is additive.





I know that if $f$ is continuous at one point then it is continuous at every point. From this i want to show that $f(x)=xf(1).$ Can anybody help me to proving this?


Answer



HINTS:




  1. Look at $0$ first: $f(0)=f(0+0)=f(0)+f(0)$, so $f(0)=0=0\cdot f(1)$.




  2. Use induction to prove that $f(n)=nf(1)$ for every positive integer $n$, and use $f(0)=0$ to show that $f(n)=nf(1)$ for every negative integer as well.




  3. $f(1)=f\left(\frac12+\frac12\right)=f\left(\frac13+\frac13+\frac13\right)=\dots\;$.




  4. Once you’ve got it for $f\left(\frac1n\right)$, use the idea of (2) to get it for all rationals.





  5. Then use continuity at a point.



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...