Evaluate: I=∫π20tan(x)ln(sinx)ln(cosx)dx
My ideas is to use the Fourier series of log sin and log cos:
ln(2sinx)=−∞∑k=1cos(2kx)k ln(2cosx)=−∞∑k=1(−1)kcos(2kx)k
But my problem is that I find difficult integrals like:
∫tan(x)cos(2kx)dx
My another idea is:
Use the substation : y=tanx then dx=dy1+y2
Then where x=0⇒y=0 and for x=π2⇒y=∞
So:
I=12∫∞0yln(y√1+y2)ln(1+y2)1+y2dy
But now I don't know how to complete.
No comments:
Post a Comment