Thursday, November 9, 2017

complex analysis - Calculate intinftyinftyfracsin(z)zdz



Γ1 is the line connecting ϵ to R.



Γ2 is the counterclockwise upper semicircle with radius R.




Γ3 is the line connecting R to ϵ.



Γ4 is the clockwise upper semicircle with radius ϵ.



Denote Γ=Γ1+Γ2+Γ3+Γ4.



I used Cauchy's integral theorem to show that



Γeizzdz=0.




Now I need to evaluate the different parts of the integral Γeizzdz and show that sin(z)zdz=π using the fact that lim.



So far I managed to show that \int_{\Gamma_2}^{ } \frac{e^{iz}}{z}dz=0.



So I am left with



\int_{\Gamma_1}^{ } \frac{e^{iz}}{z}dz+\int_{\Gamma_3}^{ } \frac{e^{iz}}{z}dz=-\int_{\Gamma_2}^{ } \frac{e^{iz}}{z}dz \Rightarrow



\Rightarrow \int_{-R}^{-\epsilon} \frac{\cos(z)}{z}dz+i\int_{-R}^{-\epsilon} \frac{\sin(z)}{z}dz+\int_{\epsilon}^{R} \frac{\cos(z)}{z}dz+i\int_{\epsilon}^{R} \frac{\sin(z)}{z}dz=-\int_{\Gamma_2}^{ } \frac{\cos(z)}{z}dz-i\int_{\Gamma_2}^{ } \frac{\sin(z)}{z}dz.




But I can't see how to evaluate these integrals. What am I missing here?


Answer



First note that by Jordan lemma:
\lim_{R\to\infty}\int_{\Gamma_2}\frac{e^{iz}}{z}dz=0.



Next
\lim_{R\to\infty}\left[\int_{\Gamma_1}\frac{e^{iz}}{z}dz+\int_{\Gamma_3}\frac{e^{iz}}{z}dz\right]= \int_{\epsilon}^\infty\frac{e^{ix}}{x}dx+\int_{-\infty}^{-\epsilon}\frac{e^{ix}}{x}dx=\int_{\epsilon}^\infty\frac{e^{ix}}{x}dx+\int_{\epsilon}^\infty\frac{e^{-ix}}{-x}dx\\ =2i\int_{\epsilon}^\infty\frac{\sin x}{x}dx.
In the limit \epsilon\rightarrow 0 we have
0=\oint\frac{e^{iz}}{z}dz= \underbrace{-\pi}_{\Gamma_4} i+\underbrace{2i\int_{0}^\infty\frac{\sin x}{x}dx}_{\Gamma_1+\Gamma_3}\Rightarrow \int_0^\infty\frac{\sin x}{x}=\frac{\pi}{2}.
Finally observing that \frac{\sin x}{x} is an even function:
\int_{-\infty}^\infty\frac{\sin x}{x}=2\int_0^\infty\frac{\sin x}{x}=\pi.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...