Saturday, May 6, 2017

The value of a limit of a power series: limlimitsxrightarrow+inftysumik=1nfty(1)kleft(fracxkright)k



What is the answer to the following limit of a power series?



lim


Answer



A simple calculation shows that



\begin{align*} \sum_{k=1}^{\infty} (-1)^{k} \left( \frac{x}{k} \right)^{k} &= \sum_{k=1}^{\infty} \frac{(-1)^{k} x^{k}}{(k-1)!} \int_{0}^{\infty} t^{k-1} e^{-kt} \, dt = \int_{0}^{\infty} \sum_{k=1}^{\infty} \frac{(-1)^{k} x^{k} t^{k-1} e^{-kt}}{(k-1)!} \, dt \\ &= -x \int_{0}^{\infty} \exp \left\{ - t \left( 1 + x e^{-t} \right) \right\} \, dt = - \int_{0}^{1} x \cdot u^{x u} \, du, \end{align*}



where u = e^{-t}. Now we claim that



\lim_{x\to\infty} \int_{0}^{1} x \cdot u^{x u} \, du = 1.




To find the limit, we prove the following lemma:




Lemma. Let f : [0, \delta] \to [0, 1] be a measurable function. Suppose there exists 0 < A < B such that
1 - Ax \leq f(x) \leq 1 - Bx.
Then we have
\frac{1}{A} \leq \liminf_{x\to\infty} \left( x \int_{0}^{\delta} f(t)^{x} \, dt \right) \leq \limsup_{x\to\infty} \left( x \int_{0}^{\delta} f(t)^{x} \, dt \right) \leq \frac{1}{B}.




Assume this lemma holds. Let f(u) = u^{u}. Then we observe that





  1. f(u) decreases for [0, 1/e] and increases for [1/e, 1].

  2. For any small \epsilon > 0, there exists small \delta > 0 such that
    1 - (1+\epsilon)(1-u) \leq f(u) \leq 1 - (1-\epsilon)(1-u)
    for 0 < u < \delta.

  3. For any large M > 0, we can choose small \delta > 0 such that
    f'(u) = u^{u}(1 + \log u) \leq -M
    for 0 < x < \delta. In particular, f(u) \leq 1 - Mu.




Let \epsilon > 0 be small and M > 0 be large. Let \delta > 0 be a sufficiently small number satisfying the conditions simultaneously. Then we have



0 \leq x \int_{\delta}^{1-\delta} u^{xu} \, du \leq x \max\{ f(\delta)^{x}, f(1-\delta)^{x} \} \xrightarrow{x\to\infty} 0.



Also, Lemma shows that



\frac{1}{1+\epsilon} \leq \liminf_{x\to\infty} \left( x \int_{1-\delta}^{1} u^{xu} \, du \right) \leq \limsup_{x\to\infty} \left( x \int_{1-\delta}^{1} u^{xu} \, du \right) \leq \frac{1}{1-\epsilon}



and




0 \leq \limsup_{x\to\infty} \left( x \int_{0}^{\delta} u^{xu} \, du \right) \leq \frac{1}{M}.



Putting together, we have



\frac{1}{1+\epsilon} \leq \liminf_{x\to\infty} \left( x \int_{0}^{1} u^{xu} \, du \right) \leq \limsup_{x\to\infty} \left( x \int_{0}^{1} u^{xu} \, du \right) \leq \frac{1}{1-\epsilon} + \frac{1}{M}.



Therefore, letting M \to \infty and \epsilon \to 0^{+}, we obtain



\lim_{x\to\infty} \left( x \int_{0}^{1} u^{xu} \, du \right) = 1




as desired.




Proof of Lemma. For any 0 < \eta < \delta, we have
0 \leq x \int_{\eta}^{\delta} f(t)^{x} \, dt \leq x \int_{\eta}^{\delta} \max \{ 1- B\eta, 0 \}^{x} \, dt \leq \max \{ x \delta (1- B\eta)^{x}, 0 \} \xrightarrow[]{x\to\infty} 0.
Thus we may assume that \delta is sufficiently small so that 1 - A\delta \geq 0. Then
\begin{align*} x \int_{0}^{1/A} (1 - At)^{x} \, dt + o(1) &= x \int_{0}^{\delta} (1 - At)^{x} \, dt \\ &\leq x \int_{0}^{\delta} f(t)^{x} \, dt \\ &\leq x \int_{0}^{\delta} (1 - Bt)^{x} \, dt = \leq x \int_{0}^{1/B} (1 - Bt)^{x} \, dt + o(1). \end{align*}
Evaluating, we obtain
\frac{x}{A(x+1)} + o(1) \leq x \int_{0}^{\delta} f(t)^{x} \, dt \leq \frac{x}{B(x+1)} + o(1),
proving the lemma.



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...