Tuesday, July 5, 2016

calculus - limxto0fracsinxxx2 without L'Hospital or Taylor



It is easy to see that limx0sinxxx2=0,but I can't figure out for the life of me how to argue without using L'Hospital or Taylor. Any ideas?



Answer



In THIS ANSWER, I used the integral definition of the arcsine function to show that for 0 \le x\le \pi/2, we have the inequalities



x\cos(x)\le \sin(x)\le x \tag 1



Using the trigonometric identity 1-\cos(x)=2\sin^2(x/2), we see from (1) that



-2x\,\,\underbrace{\left(\frac{\sin^2(x/2)}{x^2}\right)}_{\to \frac14}\le \frac{\sin(x)-x}{x^2}\le 0 \tag2



Applying the squeeze theorem to (2) yields the coveted limit





\bbox[5px,border:2px solid #C0A000]{\lim_{x\to 0}\frac{\sin(x)-x}{x^2}=0}



No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...