What is an example of an open map $(0,1) \to \mathbb{R}$ which is not continuous? Is it even possible for one to exist? What about in higher dimensions? The simplest example I've been able to think of is the map $e^{1/z}$ from $\mathbb{C}$ to $\mathbb{C}$ (filled in to be $0$ at $0$). There must be a simpler example, using the usual Euclidean topology, right?
Subscribe to:
Post Comments (Atom)
analysis - Injection, making bijection
I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...
-
So if I have a matrix and I put it into RREF and keep track of the row operations, I can then write it as a product of elementary matrices. ...
-
Recently I took a test where I was given these two limits to evaluate: $\lim_\limits{h \to 0}\frac{\sin(x+h)-\sin{(x)}}{h}$ and $\lim_\limi...
-
I need to give an explicit bijection between $(0, 1]$ and $[0,1]$ and I'm wondering if my bijection/proof is correct. Using the hint tha...
No comments:
Post a Comment