Monday, July 25, 2016

limits - Show that $limlimits_{ntoinfty}frac1{n}sumlimits_{k=1}^{infty}leftlfloorfrac{n}{3^k}rightrfloor=frac{1}{2}$




Show that

$$\lim_{n\to\infty}\frac1n\sum_{k=1}^{\infty}\left\lfloor\dfrac{n}{3^k}\right\rfloor=\frac{1}{2}$$




I can do right hand.
$$\sum_{k=1}^{\infty}\left\lfloor\dfrac{n}{3^k}\right\rfloor\le \sum_{k=1}^{\infty}\dfrac{n}{3^k}=\dfrac{n}{2}$$
But how to solve left hand?


Answer



$$0\leq \frac{n}{3^k}-\left\lfloor\frac{n}{3^k}\right\rfloor\leq 1$$
and the number of non-zero terms of the sum is bounded by $1+\log_3(n)$, hence:




$$\begin{eqnarray*} \sum_{k=1}^{+\infty}\left\lfloor\frac{n}{3^k}\right\rfloor=\sum_{k=1}^{\left\lceil\log_3(n)\right\rceil}\left\lfloor\frac{n}{3^k}\right\rfloor&\geq& -(1+\log_3(n))+\sum_{k=1}^{\left\lceil\log_3(n)\right\rceil}\frac{n}{3^k}\\&\geq&\frac{n}{2}-(1+\log_3(n))-\sum_{k>\left\lceil \log_3(n)\right\rceil}\frac{n}{3^k}\\&\geq&\frac{n}{2}-2\log(n)\end{eqnarray*}$$
for any $n$ big enough.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...