Monday, July 25, 2016

limits - Show that limlimitsntoinftyfrac1nsumlimitsinftyk=1leftlfloorfracn3krightrfloor=frac12




Show that

lim




I can do right hand.
\sum_{k=1}^{\infty}\left\lfloor\dfrac{n}{3^k}\right\rfloor\le \sum_{k=1}^{\infty}\dfrac{n}{3^k}=\dfrac{n}{2}
But how to solve left hand?


Answer



0\leq \frac{n}{3^k}-\left\lfloor\frac{n}{3^k}\right\rfloor\leq 1
and the number of non-zero terms of the sum is bounded by 1+\log_3(n), hence:




\begin{eqnarray*} \sum_{k=1}^{+\infty}\left\lfloor\frac{n}{3^k}\right\rfloor=\sum_{k=1}^{\left\lceil\log_3(n)\right\rceil}\left\lfloor\frac{n}{3^k}\right\rfloor&\geq& -(1+\log_3(n))+\sum_{k=1}^{\left\lceil\log_3(n)\right\rceil}\frac{n}{3^k}\\&\geq&\frac{n}{2}-(1+\log_3(n))-\sum_{k>\left\lceil \log_3(n)\right\rceil}\frac{n}{3^k}\\&\geq&\frac{n}{2}-2\log(n)\end{eqnarray*}
for any n big enough.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection f \colon A \rightarrow B and I want to get bijection. Can I just resting codomain to f(A)? I know that every function i...