Thursday, July 7, 2016

trigonometry - Proof of $sin^2 x+cos^2 x=1$ using Euler's Formula




How would you prove $\sin^2x + \cos^2x = 1$ using Euler's formula?



$$e^{ix} = \cos(x) + i\sin(x)$$



This is what I have so far:



$$\sin(x) = \frac{1}{2i}(e^{ix}-e^{-ix})$$



$$\cos(x) = \frac{1}{2} (e^{ix}+e^{-ix})$$



Answer



Multiply $\mathrm e^{\mathrm ix}=\cos(x)+\mathrm i\sin(x)$ by the conjugate identity $\overline{\mathrm e^{\mathrm ix}}=\cos(x)-\mathrm i\sin(x)$ and use that $\overline{\mathrm e^{\mathrm ix}}=\mathrm e^{-\mathrm ix}$ hence $\mathrm e^{\mathrm ix}\cdot\overline{\mathrm e^{\mathrm ix}}=\mathrm e^{\mathrm ix-\mathrm ix}=1$.


No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...