Related: Can a sum of square roots be an integer?
Except for the obvious cases $n=0,1$, are there any values of $n$ such that $\sum_{k=1}^n\sqrt k$ is an integer? How does one even approach such a problem? (This is not homework - just a problem I thought up.)
Answer
No, it is not an integer.
Let $p_1=2
See this answer/question for a proof of the dimension of this field extension. There are then several ways of getting the Galois theoretic claims. For example we can view $K$ as a compositum of linearly disjoint quadratic Galois extensions, or we can use the basis given there to verify that all the above maps $\sigma$ are distinct automorphisms.
For the sum $S_n=\sum_{\ell=1}^n\sqrt{\ell}\in K$ to be a rational number, it has to be fixed by all the automorphisms in $G$. This is one of the basic ideas of Galois correspondence. But clearly $\sigma(S_n)
No comments:
Post a Comment