Thursday, July 28, 2016

number theory - Is $sqrt1+sqrt2+dots+sqrt n$ ever an integer?




Related: Can a sum of square roots be an integer?




Except for the obvious cases $n=0,1$, are there any values of $n$ such that $\sum_{k=1}^n\sqrt k$ is an integer? How does one even approach such a problem? (This is not homework - just a problem I thought up.)


Answer




No, it is not an integer.



Let $p_1=2The Galois group $G$ is an elementary abelian 2-group. An automorphism $\sigma\in G$ is fully determined by a sequence of $k$ signs $s_i\in\{+1,-1\}$, $\sigma(\sqrt{p_i})=s_i\sqrt{p_i}$, $i=1,2,\ldots,k$.



See this answer/question for a proof of the dimension of this field extension. There are then several ways of getting the Galois theoretic claims. For example we can view $K$ as a compositum of linearly disjoint quadratic Galois extensions, or we can use the basis given there to verify that all the above maps $\sigma$ are distinct automorphisms.



For the sum $S_n=\sum_{\ell=1}^n\sqrt{\ell}\in K$ to be a rational number, it has to be fixed by all the automorphisms in $G$. This is one of the basic ideas of Galois correspondence. But clearly $\sigma(S_n)

No comments:

Post a Comment

analysis - Injection, making bijection

I have injection $f \colon A \rightarrow B$ and I want to get bijection. Can I just resting codomain to $f(A)$? I know that every function i...